STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SDM94528.1RNA polymerase, sigma 28 subunit, SigD/FliA/WhiG; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (368 aa)    
Predicted Functional Partners:
SDN19089.1
Hypothetical protein.
  
 
 
 0.986
SDN67140.1
Anti-anti-sigma factor.
 
 
 0.964
SDM88393.1
Anti-sigma regulatory factor (Ser/Thr protein kinase).
 
 
 0.962
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
 
 0.936
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
 
 0.935
SDM62716.1
PAS domain S-box-containing protein.
  
 
 0.909
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
 
 0.845
xerC
Integrase/recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
       0.842
SDN67157.1
Signal transduction histidine kinase.
  
  
 0.809
SDN05983.1
SAF domain-containing protein.
  
  
 0.799
Your Current Organism:
Allokutzneria albata
NCBI taxonomy Id: 211114
Other names: A. albata, ATCC 55061, DSM 44149, JCM 9917, Kibdelosporangium albatum, NBRC 101910, NRRL B-24461, strain R761-7
Server load: low (28%) [HD]