STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsIUnannotated protein; Belongs to the universal ribosomal protein uS9 family. (138 aa)    
Predicted Functional Partners:
rpsN
Unannotated protein; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family.
  
 0.999
rpsJ
Unannotated protein; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family.
 
 0.999
rpsG
Unannotated protein; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
 
 0.999
rpsL
Unannotated protein; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
 
 0.999
rpsO
Unannotated protein; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
  
 0.999
rpsF
Unannotated protein; Binds together with S18 to 16S ribosomal RNA.
   
 0.999
rpsB
Unannotated protein; Belongs to the universal ribosomal protein uS2 family.
 
 0.999
rpsE
Unannotated protein; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
 
 0.999
rpsK
Unannotated protein; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
 
 0.999
rplM
Unannotated protein; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
 
 0.999
Your Current Organism:
Chlorogloeopsis fritschii
NCBI taxonomy Id: 211165
Other names: C. fritschii PCC 6912, Chlorogloeopsis fritschii PCC 6912, Chlorogloeopsis fritschii str. PCC 6912, Chlorogloeopsis sp. ATCC 27193, Chlorogloeopsis sp. DSM 101459, Chlorogloeopsis sp. PCC 6912
Server load: low (22%) [HD]