node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
coxA | coxB | SO_4607 | SO_4606 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.999 |
coxA | coxC | SO_4607 | SO_4609 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Aa3 type cytochrome c oxidase subunit III CoxC. | 0.999 |
coxA | nuoB | SO_4607 | SO_1020 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | NADH-ubiquinone oxidoreductase subunit B NuoB; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.882 |
coxA | nuoCD | SO_4607 | SO_1019 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | NADH-ubiquinone oxidoreductase subunit CD NuoCD; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.994 |
coxA | nuoE | SO_4607 | SO_1018 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | NADH-ubiquinone oxidoreductase subunit E NuoE. | 0.892 |
coxA | nuoF | SO_4607 | SO_1017 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | NADH-ubiquinone oxidoreductase subunit F NuoF; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.886 |
coxA | nuoG | SO_4607 | SO_1016 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | NADH-ubiquinone oxidoreductase subunit G NuoG; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). | 0.875 |
coxA | petA | SO_4607 | SO_0608 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase FeS subunit PetA; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.991 |
coxA | petB | SO_4607 | SO_0609 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase cytochrome b subunit PetB; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
coxA | petC | SO_4607 | SO_0610 | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase cytochrome c1 subunit PetC. | 0.993 |
coxB | coxA | SO_4606 | SO_4607 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Aa3 type cytochrome c oxidase subunit I CoxA; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.999 |
coxB | coxC | SO_4606 | SO_4609 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Aa3 type cytochrome c oxidase subunit III CoxC. | 0.999 |
coxB | nuoB | SO_4606 | SO_1020 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | NADH-ubiquinone oxidoreductase subunit B NuoB; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.921 |
coxB | nuoCD | SO_4606 | SO_1019 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | NADH-ubiquinone oxidoreductase subunit CD NuoCD; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.998 |
coxB | nuoE | SO_4606 | SO_1018 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | NADH-ubiquinone oxidoreductase subunit E NuoE. | 0.912 |
coxB | nuoF | SO_4606 | SO_1017 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | NADH-ubiquinone oxidoreductase subunit F NuoF; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.888 |
coxB | nuoG | SO_4606 | SO_1016 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | NADH-ubiquinone oxidoreductase subunit G NuoG; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). | 0.869 |
coxB | petA | SO_4606 | SO_0608 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Ubiquinol-cytochrome c reductase FeS subunit PetA; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
coxB | petB | SO_4606 | SO_0609 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Ubiquinol-cytochrome c reductase cytochrome b subunit PetB; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
coxB | petC | SO_4606 | SO_0610 | Aa3-type cytochrome c oxidase subunit II CoxB; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Ubiquinol-cytochrome c reductase cytochrome c1 subunit PetC. | 0.993 |