STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (216 aa)    
Predicted Functional Partners:
purD
Phosphoribosylamine--glycine ligase; Identified by similarity to SP:P15640; match to protein family HMM PF01071; match to protein family HMM PF02655; match to protein family HMM PF02843; match to protein family HMM PF02844; match to protein family HMM TIGR00877; Belongs to the GARS family.
 
 0.999
purH
Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Identified by similarity to SP:P15639; match to protein family HMM PF01808; match to protein family HMM PF02142; match to protein family HMM TIGR00355.
 0.999
purL
Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate.
  
 
 0.999
purM
Phosphoribosylformylglycinamidine cyclo-ligase; Identified by similarity to SP:P08178; match to protein family HMM PF00586; match to protein family HMM PF02769; match to protein family HMM TIGR00878.
  
 0.999
purT
Phosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family.
   
 
 0.969
folD
Bifunctional protein FolD; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
 
 
 0.963
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family.
 
 0.956
glyA_1
Glycine hydroxymethyltransferase; Identified by similarity to SP:P00477; match to protein family HMM PF00464.
  
 0.945
glyA_2
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 0.945
glyA_3
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 0.945
Your Current Organism:
Pseudomonas protegens
NCBI taxonomy Id: 220664
Other names: P. protegens Pf-5, Pseudomonas fluorescens Pf-5, Pseudomonas protegens Pf-5, Pseudomonas protegens str. Pf-5, Pseudomonas protegens strain Pf-5, Pseudomonas sp. Pf-5
Server load: low (30%) [HD]