STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AOS94568.1Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family. (453 aa)    
Predicted Functional Partners:
AOS92224.1
FAD-dependent oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.985
AOS94445.1
Menaquinol-cytochrome C reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.984
APD84358.1
(2Fe-2S)-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.984
AOS93295.1
NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family.
  
 
 0.972
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
 
 0.971
AOS93293.1
NADH-quinone oxidoreductase subunit E; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.965
nuoD
NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
  
 
 0.958
AOS90958.1
NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.956
nuoF
NADH oxidoreductase (quinone) subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family.
   
 
 0.956
AOS91950.1
Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.951
Your Current Organism:
Mycobacterium chimaera
NCBI taxonomy Id: 222805
Other names: CCUG 50989, CIP 107892, DSM 44623, JCM 14737, M. chimaera, Mycobacterium chimaera Tortoli et al. 2004, NCTC 13781, personal::FI-01069, strain FI-01069
Server load: low (22%) [HD]