STRINGSTRING
serS protein (Bacillus subtilis) - STRING interaction network
"serS" - Serine--tRNA ligase in Bacillus subtilis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
serSSerine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec) (425 aa)    
Predicted Functional Partners:
cysS
Cysteine--tRNA ligase; Evidence 1a- Function experimentally demonstrated in the studied strain; Product type e- enzyme; Belongs to the class-I aminoacyl-tRNA synthetase family (466 aa)
 
   
  0.940
valS
Valine--tRNA ligase; As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a "posttransfer" editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA-dependent manner (By similarity). Catalyzes the attachment of valine to tRNA(Val); Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily (880 aa)
   
   
  0.930
ileS
Isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (921 aa)
 
   
  0.913
leuS
Leucine--tRNA ligase; Evidence 1a- Function experimentally demonstrated in the studied strain; Product type e- enzyme; Belongs to the class-I aminoacyl-tRNA synthetase family (804 aa)
   
   
  0.907
thrS
Threonine--tRNA ligase 1; Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction- L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr); Belongs to the class-II aminoacyl-tRNA synthetase family (643 aa)
 
 
  0.898
hisS
Histidine--tRNA ligase; Evidence 2a- Function of homologous gene experimentally demonstrated in an other organism; Product type e- enzyme (424 aa)
 
 
  0.886
metS
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 2B subfamily (664 aa)
   
   
  0.873
thrZ
Threonine--tRNA ligase 2; Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction- L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr); Belongs to the class-II aminoacyl-tRNA synthetase family (638 aa)
 
 
  0.855
trpS
Tryptophan--tRNA ligase; Catalyzes the attachment of tryptophan to tRNA(Trp); Belongs to the class-I aminoacyl-tRNA synthetase family (330 aa)
   
 
  0.855
gltX
Glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (483 aa)
   
 
  0.847
Your Current Organism:
Bacillus subtilis
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis, Bacillus subtilis 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (19%) [HD]