STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dgkDeoxyguanosine kinase; Plays an essential role in generating the deoxyribonucleotide precursors dGTP for DNA metabolism. Highly specific toward deoxyguanosine (dGuo) and deoxyinosine (dIno). Only marginal activity is observed with guanosine. UTP is slightly more efficient as phosphate donor than CTP, ATP and GTP. (207 aa)    
Predicted Functional Partners:
ctaC
Cytochrome caa3 oxidase (subunit II); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
   
 
 0.969
dck
Deoxyadenosine/deoxycytidine kinase; Plays an essential role in generating the deoxyribonucleotide precursors dATP AND dCTP for DNA metabolism. The phosphate acceptor specificity is strict toward deoxyadenosine (dAdo) and deoxycytidine (dCyd). The specificity toward the sugar moiety of the nucleoside is less strict. Both 2-deoxyribose, ribose, and arabinose nucleosides are phosphorylated, although the 2-deoxyribonucleosides are preferred. The phosphate donor specificity is dependent on the deoxyribonucleoside substrate, but GTP is efficient with both deoxycytidine and deoxyadenosine. O [...]
 
  
0.953
gmk
Guanylate kinase; Essential for recycling GMP and indirectly, cGMP.
   
 
 0.943
folK
7,8-dihydro-6-hydroxymethylpterin pyrophosphokinase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the HPPK family.
 
    0.910
deoD
Purine nucleoside phosphorylase; Cleavage of adenosine and its derivatives; Belongs to the PNP/UDP phosphorylase family.
  
 
  0.909
pupG
Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine, inosine, 2'-deoxyguanosine and 2'-deoxyinosine.
     
 0.903
yesF
Putative oxidoreductase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the NmrA-type oxidoreductase family.
   
 0.821
yhfK
Putative epimerase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme.
   
 0.821
yhfW
Putative Rieske [2Fe-2S] oxygenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme.
   
 
 0.658
qcrA
Menaquinol:cytochrome c oxidoreductase (iron-sulfur subunit); Component of the menaquinol-cytochrome c reductase complex. The Rieske protein is a high potential 2Fe-2S protein.
   
 
 0.658
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (32%) [HD]