STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purRTranscriptional regulator of the purine biosynthesis operon; Controls the transcription of the pur operon for purine biosynthetic genes, binds to the control region of the operon. DNA binding is inhibited by 5-phosphoribosyl 1-pyrophosphate; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (285 aa)    
Predicted Functional Partners:
yabJ
Aminoacrylate/iminopropionate hydrolase/deaminase; Accelerates the release of ammonia from reactive enamine/imine intermediates of the PLP-dependent threonine dehydratase (IlvA) in the low water environment of the cell. It catalyzes the deamination of enamine/imine intermediates to yield 2-ketobutyrate and ammonia. It is required for the detoxification of reactive intermediates of IlvA due to their highly nucleophilic abilities. Involved in the isoleucine biosynthesis. May have a role in the purine metabolism; Belongs to the RutC family.
  
  
 0.974
purA
Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
   
 
 0.917
guaA
GMP synthetase; Catalyzes the synthesis of GMP from XMP.
  
 
 0.898
pbuO
Hypoxanthine/guanine permease; Involved in the uptake of the purine bases hypoxanthine and guanine. May work at purine concentrations higher than 100 uM.
  
  
 0.894
pbuG
Hypoxanthine/guanine permease; Involved in the uptake of the purine bases hypoxanthine and guanine; Belongs to the xanthine/uracil permease family. AzgA purine transporter (TC 2.A.1.40) subfamily.
  
  
 0.888
prs
Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P).
  
  
 0.806
guaC
GMP reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides (Probable).
  
  
 0.799
purF
Glutamine phosphoribosylpyrophosphate amidotransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine.
   
  
 0.792
gcaD
Bifunctional glucosamine-1-phosphate N-acetyltransferase/UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belon [...]
 
  
 0.770
ispE
4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol.
  
    0.757
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (20%) [HD]