STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
cysScysteinyl-tRNA synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I aminoacyl-tRNA synthetase family. (466 aa)    
Predicted Functional Partners:
cysE
Serine acetyltransferase; Catalyzes the acetylation of serine by acetyl-CoA to produce O-acetylserine (OAS).
 
  
 0.999
mrnC
Ribonuclease for 23S RNA maturation; Involved in correct processing of both the 5' and 3' ends of 23S rRNA precursor. Processes 30S rRNA precursor transcript even in absence of ribonuclease 3 (Rnc); Rnc processes 30S rRNA into smaller rRNA precursors. Cleaves more efficiently on assembled 50S ribosomal subunits. Cleavage is strongly stimulated by ribosomal protein L3 (RplC); 20-30% DMSO can replace RplC, suggesting RplC may alter rRNA conformation.
  
  
 0.990
rlmB
23S rRNA methyltransferase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family.
  
 
 0.981
yacP
Putative ribonuclease with PIN and NYN domains; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme.
  
  
 0.975
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu).
  
  
 0.957
serS
seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec).
 
 
 0.955
valS
valyl-tRNA synthetase; As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA-dependent manner (By similarity). Catalyzes the attachment of valine to tRNA(Val); Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily.
 
  
 0.927
ytkP
Putative cysteine synthase-like protein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme.
  
 
 0.922
leuS
leucyl-tRNA synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 
 0.920
cysK
Cysteine synthase; Catalyzes the conversion of O-acetylserine to cysteine. Also acts as a sensor of cysteine availability in the signal transduction pathway modulating CymR activity. When cysteine is present, the pool of O-acetylserine (OAS) is low, which leads to the formation of a CymR- CysK complex and transcriptional repression of the CymR regulon occurs. In the absence of cysteine, the OAS pool is high and the CymR-CysK complex is mostly dissociated, leading to a faster dissociation of CymR from its DNA targets and the lifting of CymR-dependent repression.
  
 
 0.907
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (34%) [HD]