STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nusGTranscription antitermination factor; Participates in transcription elongation, termination and antitermination. Stimulates RNA polymerase pausing at U107 and U144 in the trp leader. NusG-stimulated pausing is sequence specific. Does not affect trp leader termination. (177 aa)    
Predicted Functional Partners:
nusB
Transcription termination factor NusB; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons.
  
 
 0.999
rplK
Ribosomal protein L11 (BL11); Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors; Belongs to the universal ribosomal protein uL11 family.
 
 0.997
rpoB
RNA polymerase (beta subunit); DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.994
rho
Transcriptional terminator Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template.
   
 
 0.987
secE
Preprotein translocase subunit; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation.
  
  
 0.985
rpoC
RNA polymerase (beta' subunit); DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.981
rpsC
Ribosomal protein S3 (BS3); Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family.
 
 
 0.981
rplJ
Ribosomal protein L10 (BL5); Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors (such as IF-2, EF-Tu, EF-G and RF3).
 
 
 0.980
rpsJ
Ribosomal protein S10 (BS13); Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family.
 
 
 0.978
rplA
Ribosomal protein L1 (BL1); Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. Belongs to the universal ribosomal protein uL1 family.
 
  
 0.976
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (26%) [HD]