STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mtlRTranscriptional regulator; Positively regulates the expression of the mtlAFD operon involved in the uptake and catabolism of mannitol. (694 aa)    
Predicted Functional Partners:
mtlF
Phosphotransferase system (PTS) mannitol-specific enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II CmtAB PTS system is involved in D-mannitol transport.
 
  
 0.981
mtlA
Phosphotransferase system (PTS) mannitol-specific enzyme IICB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II CmtAB PTS system is involved in D-mannitol transport.
 
  
 0.973
mtlD
Mannitol-1-phosphate dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme.
  
 0.960
yrkD
Putative transcriptional regulator; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative regulator.
   
    0.746
ycsN
Putative oxidoreductase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldo/keto reductase family. Aldo/keto reductase 2 subfamily.
  
    0.573
gamP
Phosphotransferase system (PTS) glucosamine-specific enzyme IICBA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system may be involved in glucosamine transport.
   
 
 0.567
treR
Transcriptional regulator (GntR family); Repressor for the trePA operon. It is able to bind trehalose- 6-phosphate.
  
  
 0.566
bglP
Phosphotransferase system (PTS) beta-glucoside-specific enzyme IIBCA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in beta-glucoside transport (By similarity).
 
 
 0.564
licA
Phosphotransferase system (PTS) lichenan-specific enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in lichenan transport.
 
  
 0.563
scoC
HTH-type transcriptional regulator Hpr; Negative regulator of protease production and sporulation. Acts by binding directly to the promoter of protease genes (aprE and nprE), and by repressing oligopeptide permease operons (appABCDF and oppABCDF), thereby preventing uptake of oligopeptides required for initiation of sporulation. Acts with SinR as a corepressor of epr expression.
   
  
 0.555
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (28%) [HD]