node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
accC | gatA | BSU24340 | BSU06680 | acetyl-CoA carboxylase subunit (biotin carboxylase subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | glutamyl-tRNA(Gln) amidotransferase (subunit A); Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | 0.879 |
accC | kipA | BSU24340 | BSU04090 | acetyl-CoA carboxylase subunit (biotin carboxylase subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | Putative hydrolase subunit antagonist of KipI; Catalyzes the cleavage of 5-oxoproline to form L-glutamate coupled to the hydrolysis of ATP to ADP and inorganic phosphate. In addition, counteracts the inhibitory action of PxpB (KipI) on sporulation, by binding to PxpB and preventing its function as an inhibitor of kinase A. | 0.913 |
accC | pksJ | BSU24340 | BSU17180 | acetyl-CoA carboxylase subunit (biotin carboxylase subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.628 |
accC | yngHA | BSU24340 | BSU18240 | acetyl-CoA carboxylase subunit (biotin carboxylase subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | Biotin carboxylase/methylcrotonoyl-CoA carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 0.922 |
asnS | aspS | BSU22360 | BSU27550 | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | 0.560 |
asnS | gatA | BSU22360 | BSU06680 | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | glutamyl-tRNA(Gln) amidotransferase (subunit A); Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | 0.989 |
asnS | gatB | BSU22360 | BSU06690 | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | glutamyl-tRNA(Gln) amidotransferase (subunit B); Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. | 0.998 |
asnS | gatC | BSU22360 | BSU06670 | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | glutamyl-tRNA(Gln) amidotransferase (subunit C); Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) (By similarity); Belongs to the GatC family. | 0.974 |
asnS | gltX | BSU22360 | BSU00920 | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). | 0.985 |
asnS | pksJ | BSU22360 | BSU17180 | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.464 |
aspS | asnS | BSU27550 | BSU22360 | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | 0.560 |
aspS | gatA | BSU27550 | BSU06680 | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | glutamyl-tRNA(Gln) amidotransferase (subunit A); Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | 0.834 |
aspS | gatB | BSU27550 | BSU06690 | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | glutamyl-tRNA(Gln) amidotransferase (subunit B); Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. | 0.993 |
aspS | gatC | BSU27550 | BSU06670 | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | glutamyl-tRNA(Gln) amidotransferase (subunit C); Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) (By similarity); Belongs to the GatC family. | 0.899 |
aspS | gltX | BSU27550 | BSU00920 | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). | 0.927 |
aspS | pksJ | BSU27550 | BSU17180 | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.448 |
fruK | gatA | BSU14390 | BSU06680 | Fructose-1-phosphate kinase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | glutamyl-tRNA(Gln) amidotransferase (subunit A); Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | 0.835 |
fruK | pksJ | BSU14390 | BSU17180 | Fructose-1-phosphate kinase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.544 |
gatA | accC | BSU06680 | BSU24340 | glutamyl-tRNA(Gln) amidotransferase (subunit A); Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | acetyl-CoA carboxylase subunit (biotin carboxylase subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 0.879 |
gatA | asnS | BSU06680 | BSU22360 | glutamyl-tRNA(Gln) amidotransferase (subunit A); Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | asparaginyl-tRNA synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. | 0.989 |