node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
aldX | cypB | BSU39860 | BSU27160 | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldehyde dehydrogenase family. | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | 0.919 |
aldX | cypD | BSU39860 | BSU07250 | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldehyde dehydrogenase family. | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | 0.919 |
aldX | pksJ | BSU39860 | BSU17180 | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldehyde dehydrogenase family. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.570 |
aldX | pksN | BSU39860 | BSU17210 | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldehyde dehydrogenase family. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.590 |
aldY | cypB | BSU38830 | BSU27160 | Putative aldehyde dehydrogenase; May contribute to protect cells against stress due to ethanol and related compounds; Belongs to the aldehyde dehydrogenase family. | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | 0.919 |
aldY | cypD | BSU38830 | BSU07250 | Putative aldehyde dehydrogenase; May contribute to protect cells against stress due to ethanol and related compounds; Belongs to the aldehyde dehydrogenase family. | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | 0.937 |
aldY | pksJ | BSU38830 | BSU17180 | Putative aldehyde dehydrogenase; May contribute to protect cells against stress due to ethanol and related compounds; Belongs to the aldehyde dehydrogenase family. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.570 |
aldY | pksN | BSU38830 | BSU17210 | Putative aldehyde dehydrogenase; May contribute to protect cells against stress due to ethanol and related compounds; Belongs to the aldehyde dehydrogenase family. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.592 |
cypB | aldX | BSU27160 | BSU39860 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldehyde dehydrogenase family. | 0.919 |
cypB | aldY | BSU27160 | BSU38830 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Putative aldehyde dehydrogenase; May contribute to protect cells against stress due to ethanol and related compounds; Belongs to the aldehyde dehydrogenase family. | 0.919 |
cypB | cypD | BSU27160 | BSU07250 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | 0.933 |
cypB | cysI | BSU27160 | BSU33430 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Sulfite reductase (hemoprotein beta-subunit); Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate (Probable); Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. | 0.930 |
cypB | dhaS | BSU27160 | BSU19310 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldehyde dehydrogenase family. | 0.919 |
cypB | dhbF | BSU27160 | BSU31960 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin synthetase; Specifically adenylates threonine and glycine, and loads them onto their corresponding peptidyl carrier domains. | 0.977 |
cypB | pksJ | BSU27160 | BSU17180 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.998 |
cypB | pksN | BSU27160 | BSU17210 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.963 |
cypB | srfAC | BSU27160 | BSU03510 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Surfactin synthetase; Probably activates a leucine. | 0.978 |
cypB | ywdH | BSU27160 | BSU37960 | Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. | 0.919 |
cypD | aldX | BSU07250 | BSU39860 | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | Putative aldehyde dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the aldehyde dehydrogenase family. | 0.919 |
cypD | aldY | BSU07250 | BSU38830 | Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS). | Putative aldehyde dehydrogenase; May contribute to protect cells against stress due to ethanol and related compounds; Belongs to the aldehyde dehydrogenase family. | 0.937 |