STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
yfmSPutative chemotaxis sensory transducer; Chemotactic-signal transducers respond to changes in the concentration of attractants and repellents in the environment, transduce a signal from the outside to the inside of the cell, and facilitate sensory adaptation through the variation of the level of methylation. Attractants increase the level of methylation while repellents decrease the level of methylation (By similarity). (286 aa)    
Predicted Functional Partners:
yfmT
Putative aldehyde dehydrogenase; A benzaldehyde dehydrogenase able to act on substrates with 3- and 4-hydroxy and methoxy substitutions; converts vanillin (4- hydroxy-3-methoxybenzaldehyde) to vanillic acid in vitro. The physiological substrate is unknown.
  
  
 0.995
cheV
Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis.
 
 
 0.988
cheA
Chemotactic two-component sensor histidine kinase; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to CheB, CheY or CheV.
 
 
 0.973
mcpA
Methyl-accepting chemotaxis protein; Chemotactic-signal transducers respond to changes in the concentration of attractants and repellents in the environment, transduce a signal from the outside to the inside of the cell, and facilitate sensory adaptation through the variation of the level of methylation. All amino acids serve as attractants in B.subtilis, they appear to cause an increase in the turnover methyl groups, leading to methylation of an unidentified acceptor, while repellents have been shown to cause a decrease in methyl group turnover. The methyl groups are added by a methyl [...]
  
  
0.949
motB
Motility protein B; MotA and MotB comprise the stator element of the flagellar motor complex. Required for the rotation of the flagellar motor. Might be a linker that fastens the torque-generating machinery to the cell wall (By similarity).
 
  
 0.948
cheY
Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming.
 
  
 0.946
cheW
Modulation of CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheV and CheW are involved in the coupling of the methyl-accepting chemoreceptors to the central two- component kinase CheA; they are both necessary for efficient chemotaxis.
 
 
 0.945
mcpB
Methyl-accepting chemotaxis protein; Chemotactic-signal transducers respond to changes in the concentration of attractants and repellents in the environment, transduce a signal from the outside to the inside of the cell, and facilitate sensory adaptation through the variation of the level of methylation. All amino acids serve as attractants in B.subtilis, they appear to cause an increase in the turnover methyl groups, leading to methylation of an unidentified acceptor, while repellents have been shown to cause a decrease in methyl group turnover. The methyl groups are added by a methyl [...]
  
  
0.945
motA
Motility protein A; MotA and MotB comprise the stator element of the flagellar motor complex. Required for rotation of the flagellar motor. Probable transmembrane proton channel (By similarity).
 
    0.941
mcpC
Methyl-accepting chemotaxis protein; Chemotactic-signal transducers respond to changes in the concentration of attractants and repellents in the environment, transduce a signal from the outside to the inside of the cell, and facilitate sensory adaptation through the variation of the level of methylation. All amino acids serve as attractants in B.subtilis, they appear to cause an increase in the turnover methyl groups, leading to methylation of an unidentified acceptor, while repellents have been shown to cause a decrease in methyl group turnover. The methyl groups are added by a methyl [...]
  
  
0.920
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: high (86%) [HD]