STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
treATrehalose-6-phosphate hydrolase; Hydrolyzes trehalose-6-phosphate to glucose and glucose 6- phosphate. Can also very effectively hydrolyzes p-nitrophenyl-alpha-D- glucopyranoside, but not lactose, maltose, sucrose or sucrose-6- phosphate. Trehalose is also hydrolyzed, but to a much smaller extent than trehalose-6-phosphate; Belongs to the glycosyl hydrolase 13 family. (561 aa)    
Predicted Functional Partners:
treP
Phosphotransferase system (PTS) trehalose-specific enzyme IIBC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport.
 
 
 0.999
treR
Transcriptional regulator (GntR family); Repressor for the trePA operon. It is able to bind trehalose- 6-phosphate.
 
  
 0.977
yyzE
Putative phosphotransferase system enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
  
 
 0.937
mdxK
Maltose phosphorylase; Catalyzes the phosphorolysis of maltose, leading to the formation of glucose and glucose 1-P.
  
 
 0.934
ypqE
Putative phosphotransferase system enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane.
  
 
 0.928
malA
6-phospho-alpha-glucosidase; Hydrolyzes maltose-6'-phosphate and trehalose-6'-phosphate. Is involved in the catabolism of alpha-glycosides accumulated via a phosphoenolpyruvate-dependent maltose phosphotransferase system (PEP- PTS). Is also able to significantly catalyze the hydrolysis of both 6- phospho-alpha- and 6-phospho-beta-glucosides containing activated leaving groups such as p-nitrophenol and does so with retention and inversion, respectively, of the substrate anomeric configuration.
   
 
 0.907
yvaV
Putative transcriptional regulator; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pr: putative regulator; Belongs to the GbsR family.
      
 0.681
yqiH
Putative lipoprotein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type lp: lipoprotein.
      
 0.666
bglP
Phosphotransferase system (PTS) beta-glucoside-specific enzyme IIBCA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in beta-glucoside transport (By similarity).
  
  
 0.635
nfsB
NAD(P)H-flavin oxidoreductase (nitroreductase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the nitroreductase family.
  
  
 0.596
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (30%) [HD]