STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
cspBMajor cold-shock protein, RNA helicase co-factor, RNA co-chaperone; Binds to the pentamer sequences ATTGG and CCAAT with highest affinity in single-stranded DNA, and also to other sequences. Has greater affinity for ATTGG than CCAAT. Can act as transcriptional activator of cold shock genes by recognizing putative ATTGG-box elements present in promoter regions of genes induced under cold shock conditions. (67 aa)    
Predicted Functional Partners:
Polynucleotide phosphorylase (PNPase); Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. Necessary for competence development in Bacillus subtilis. May be necessary for modification of the srfA transcript (stabilization or translation activation).
Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family.
Hfq RNA chaperone; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Also binds with high specificity to tRNAs. Belongs to the Hfq family.
Chaperonin large subunit; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
Ribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs.
Ribonuclease III; Digests double-stranded RNA. Involved in the processing of ribosomal RNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Also processes pre-scRNA (the precursor of the signal recognition particle RNA). Probably also processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Probably processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism.
Ribosomal protein S20 (BS20); Binds directly to 16S ribosomal RNA; Belongs to the bacterial ribosomal protein bS20 family.
Ribosomal protein L28; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor.
Ribosomal protein S15 (BS18); One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA.
Ribosomal protein L32; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor.
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (26%) [HD]