STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
cheCCheY-P phosphatase CheC; Involved in restoring normal CheY-P levels following the addition of attractant by increasing the rate of CheY-P hydrolysis. Is only 6% as active as FliY, which indicates that CheC may function after addition of an attractant to cope with increased levels of CheY-P whereas FliY may function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P. In addition, it was shown to prevent methylation of the methyl-accepting chemotaxis proteins (MCPs). Inhibits CheD (209 aa)    
Predicted Functional Partners:
cheA
Chemotaxis protein CheA; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to CheB, CheY or CheV
 
 
 0.999
cheD
Chemoreceptor glutamine deamidase CheD; Deamidates 'Gln-593' and 'Gln-594' of the chemoreceptor McpA. In addition, deamidates other chemoreceptors, including McpB and McpC. CheD-mediated MCP (methyl-accepting chemotaxis proteins) deamidation is required for productive communication of the conformational signals of the chemoreceptors to the CheA kinase. CheD is absolutely required for a behavioral response mediated by McpC but is not required for the response to asparagine mediated by McpB. CheD is necessary for the generation of wild-type prestimulus CheA autophosphorylation levels. Al [...]
 
 
 0.999
cheY
Chemotaxis protein CheY; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming
 
  
 0.990
cheW
Chemotaxis protein CheW; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheV and CheW are involved in the coupling of the methyl-accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis
 
   
 0.981
fliY
Flagellar motor switch phosphatase FliY; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P
 
   
 0.971
cheB
Chemotaxis response regulator protein-glutamate methylesterase; Involved in the modulation of the chemotaxis system; catalyzes the demethylation of specific methylglutamate residues introduced into the chemoreceptors (methyl-accepting chemotaxis proteins) by CheR. B.subtilis has an effective methylation- independent adaptation system but must utilize the methylation system for adaptation to high concentrations of attractant
 
   
 0.947
cheR
Chemotaxis protein methyltransferase; Methylation of the membrane-bound methyl-accepting chemotaxis proteins (MCP) to form gamma-glutamyl methyl ester residues in MCP. CheR is responsible for the chemotactic adaptation to repellents
 
   
 0.944
flhF
Flagellar biosynthesis protein FlhF; Necessary for flagellar biosynthesis. May be involved in translocation of the flagellum
 
   
 0.939
yneI
Protein CcdB; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pr : putative regulator
 
  
 0.924
fliM
Flagellar motor switch protein FliM; One of the proteins that forms a switch complex that is proposed to be located at the base of the basal body. This complex interacts with chemotaxis proteins (such as CheY) in addition to contacting components of the motor that determine the direction of flagellar rotation
 
   
 0.921
Your Current Organism:
Bacillus subtilis
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis, Bacillus subtilis 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (9%) [HD]