STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
spoVFBSpore dipicolinate synthase subunit B; Together with DpaA, catalyzes the conversion of dihydrodipicolinate to dipicolinate (DPA), which constitutes up to 10% of the dry weight of the spore. (200 aa)    
Predicted Functional Partners:
spoVFA
Spore dipicolinate synthase subunit A; Together with DpaB, catalyzes the conversion of dihydrodipicolinate to dipicolinate (DPA), which constitutes up to 10% of the dry weight of the spore.
 
 
 0.999
spoVAC
Stage V sporulation protein AC; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type cp: cell process.
  
  
 0.898
spoIVB
Regulatory membrane-associated serine protease; Plays a central role in the sigma-K checkpoint which coordinates gene expression during the later stages of spore formation. The protease is activated by trans cleavage of the zymogen precursor producing SpoIVB-45 kDa. This undergoes further trimming by cis cleavage to form SpoIVB-43 kDa and SpoIVB-42 kDa. The protease then cleaves the C-terminus of the SpoIVFA metalloprotease activating the latter.
  
  
 0.821
spoVAEB
Spore germinant protein; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type cp: cell process.
  
  
 0.815
spoVAD
Stage V sporulation protein AD; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type cp: cell process.
  
  
 0.808
spoVAF
Stage V sporulation protein AF; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type cp: cell process.
  
  
 0.806
spoIVA
Morphogenetic stage IV sporulation protein; ATPase. Has a role at an early stage in the morphogenesis of the spore coat outer layers. Its ATP hydrolysis is required for proper assembly of the spore coat. Forms a basement layer around the outside surface of the forespore and self-assembles irreversibly into higher order structures by binding and hydrolyzing ATP thus creating a durable and stable platform upon which thereafter morphogenesis of the coat can take place. Required for proper localization of spore coat protein CotE and sporulation-specific proteins including SpoVM.
  
  
 0.799
spoVR
Involved in spore cortex synthesis (stage V sporulation); Appears to be involved in spore cortex formation.
  
  
 0.771
spoIIID
Transcriptional regulator; This protein regulates the transcription of sigK, which encodes mother cell chamber RNA polymerase sigma-factor (sigma K).
  
  
 0.770
etfA
Electron transfer flavoprotein (alpha subunit); The electron transfer flavoprotein serves as a specific electron acceptor for other dehydrogenases. It transfers the electrons to the main respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (By similarity).
      
 0.753
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (22%) [HD]