STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
recAMultifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] (348 aa)    
Predicted Functional Partners:
Transcriptional repressor of the SOS regulon; Represses dinA, dinB, dinC, recA genes and itself by binding to the 14 bp palindromic sequence 5'-CGAACNNNNGTTCG-3'; some genes have a tandem consensus sequence and their binding is cooperative. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair; autocleavage is maximal at pH 11 in the absence of RecA and ssDNA.
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 3'-5' and 5'-3' exonuclease activity.
DNA processing Smf single strand binding protein; Protein that helps load RecA onto ssDNA during transformation. Binds cooperatively to circular ssDNA, is able to bridge different segments of DNA. Favors the loading of RecA onto SsbA- or SsbB-coated ssDNA and formation of RecA-DNA filaments. RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP.
Regulatory protein RecX; Modulates RecA activity; Belongs to the RecX family.
DNA repair protein; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function.
DNA gyrase (subunit B); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
ATP-dependent DNA helicase; Probable DNA helicase. Required in synaptic and/or post- synaptic stages of recombination. Probably has overlapping function with RecQ (AC O34748). It probably acts to help generate ss-DNA from ds-DNA breaks.
ATP-dependent DNA helicase; DNA helicase used for plasmid rolling-circle replication and also involved in UV repair.
Ribonuclease toxin of toxin-antitoxin systems RttI-RttJ; Probable DNA helicase. Required for DNA repair and intramolecular recombination; probably has overlapping function with RecS (AC P50729). It probably acts to help generate ss-DNA from ds-DNA breaks; Belongs to the helicase family. RecQ subfamily.
Factor for double strand breaks DNA repair and genetic recombination; Involved in recombinational repair of damaged DNA. Seems to be the first protein recruited to repair centers, foci that are the site of double-strand DNA break(s), followed by RecO and then RecF.
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: medium (60%) [HD]