STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recUHolliday junction resolvase; Has at least 2 separable functions; Holliday junction resolution with generation of monomeric chromosomes, and modulation of RecA activity. Endonuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves mobile four-strand junctions by introducing symmetrical nicks in paired strands. Promotes annealing of linear ssDNA with homologous dsDNA. Required for DNA repair, homologous recombination and chromosome segregation. Partially inhibits the hydrolysis of dATP or rATP by RecA. Holliday junction resolution is stimulated by RuvB. (206 aa)    
Predicted Functional Partners:
recX
Regulatory protein RecX; Modulates RecA activity; Belongs to the RecX family.
  
  
 0.964
ruvA
Holliday junction DNA helicase; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB.
  
  
 0.941
recF
DNA repair and genetic recombination factor; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP. Is recruited to repair centers, foci that are the site of double- strand DNA break(s) after RecN and RecO; recruitment may depend on RecO.
  
  
 0.939
recJ
Putative single-strand DNA-specific exonuclease; Putative single-stranded-DNA-specific exonuclease (By similarity). RecA thread formation during DNA double-strand break repair requires RecJ or AadAB; Belongs to the RecJ family.
   
  
 0.938
recO
DNA double strand break repair and homologous recombination factor; Plays a role in DNA double-stranded break repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecR. Is recruited to repair centers, foci that are the site of double-strand break(s) after RecN and before RecF; may actively recruit RecF.
   
  
 0.934
recG
Branch migrating ATP-dependent DNA helicase involved in DNA recombination and repair; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA) (By similarity); Belongs to the helicase family. RecG subfamily.
  
  
 0.929
recA
Multifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...]
     
 0.918
ponA
Peptidoglycan glycosyltransferase (penicillin-binding proteins 1A and 1B); Cell wall formation. Synthesis of cross-linked peptidoglycan from the lipid intermediates. The enzyme has a penicillin-insensitive transglycosylase N-terminal domain (formation of linear glycan strands) and a penicillin-sensitive transpeptidase C-terminal domain (cross- linking of the peptide subunits).
  
 0.917
recQ
ATP-dependent DNA helicase; Probable DNA helicase. Required in synaptic and/or post- synaptic stages of recombination. Probably has overlapping function with RecQ (AC O34748). It probably acts to help generate ss-DNA from ds-DNA breaks.
   
  
 0.915
ruvB
Holliday junction DNA helicase, ATP-dependent component; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (By similarity). Stimulates the resolution of Holliday junctions by RecU.
   
  
 0.909
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (24%) [HD]