STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaKMolecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. (611 aa)    
Predicted Functional Partners:
groEL
Chaperonin large subunit; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.999
dnaJ
Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...]
 0.999
grpE
Nucleotide exchange factor for DnaK activity; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. S [...]
 
 0.999
hrcA
Transcriptional regulator of heat-shock genes; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
  
  
 0.999
htpG
Class III heat-shock protein (molecular chaperone); Molecular chaperone. Has ATPase activity.
 
 0.999
groES
Chaperonin small subunit; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family.
 
 
 0.998
clpC
Class III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily.
  
 
 0.995
clpE
ATP-dependent Clp protease (class III stress gene); ATPase essential both for efficient CtsR-dependent gene derepression during heat stress and for rerepression. Together with ClpP, degrades the global regulator CtsR after heat shock. Is also involved in disaggregation of heat-denatured proteins. Has thus a role in overall protein quality control in response to heat stress.
  
 
 0.988
clpP
ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...]
   
 
 0.982
rtpA
anti-TRAP regulator; By forming a complex with tryptophan-activated TRAP, and masking its RNA binding site, it inhibits TRAP's RNA binding ability, thereby abolishing TRAP regulation of gene expression, leading to antitermination and increased trp operon expression. AT acts by competing with messenger RNA for the RNA binding domain of TRAP.
  
 0.976
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (18%) [HD]