node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
relP | relQ | BSU11600 | BSU38480 | (p)ppGpp synthetase; Functions as a (p)ppGpp synthase; GDP can be used instead of GTP, resulting in an increase of (p)ppGpp synthesis. The enzyme binds ATP, then GDP or GTP and catalysis is highly cooperative. In eubacteria ppGpp (guanosine 3'- diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. Probably has a minor role in the stringent response ; Belongs to the RelA/SpoT family. | (p)ppGpp synthetase; Functions as a (p)ppGpp synthase; GDP can be used instead of GTP, resulting in an increase of (p)ppGpp synthesis. Overexpression in relA mutants (triple relA-yjbM-ywaC deletions and single relA deletions) leads to growth arrest; GTP levels fall drastically, various guanine-related nucleotides are synthesized (ppGp or pGpp), the cellular transcriptional profile changes dramatically and 70S ribosome dimerization occurs. Overexpression in the presence of a wild-type relA gene does not have these effects. In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) i [...] | 0.929 |
relP | rsh | BSU11600 | BSU27600 | (p)ppGpp synthetase; Functions as a (p)ppGpp synthase; GDP can be used instead of GTP, resulting in an increase of (p)ppGpp synthesis. The enzyme binds ATP, then GDP or GTP and catalysis is highly cooperative. In eubacteria ppGpp (guanosine 3'- diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. Probably has a minor role in the stringent response ; Belongs to the RelA/SpoT family. | GTP pyrophosphokinase (RelA/SpoT); In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp, it is probably the hydrolysis activity that is required for optimal growth (Probable); Belongs to the RelA/SpoT family. | 0.998 |
relQ | relP | BSU38480 | BSU11600 | (p)ppGpp synthetase; Functions as a (p)ppGpp synthase; GDP can be used instead of GTP, resulting in an increase of (p)ppGpp synthesis. Overexpression in relA mutants (triple relA-yjbM-ywaC deletions and single relA deletions) leads to growth arrest; GTP levels fall drastically, various guanine-related nucleotides are synthesized (ppGp or pGpp), the cellular transcriptional profile changes dramatically and 70S ribosome dimerization occurs. Overexpression in the presence of a wild-type relA gene does not have these effects. In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) i [...] | (p)ppGpp synthetase; Functions as a (p)ppGpp synthase; GDP can be used instead of GTP, resulting in an increase of (p)ppGpp synthesis. The enzyme binds ATP, then GDP or GTP and catalysis is highly cooperative. In eubacteria ppGpp (guanosine 3'- diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. Probably has a minor role in the stringent response ; Belongs to the RelA/SpoT family. | 0.929 |
relQ | rsh | BSU38480 | BSU27600 | (p)ppGpp synthetase; Functions as a (p)ppGpp synthase; GDP can be used instead of GTP, resulting in an increase of (p)ppGpp synthesis. Overexpression in relA mutants (triple relA-yjbM-ywaC deletions and single relA deletions) leads to growth arrest; GTP levels fall drastically, various guanine-related nucleotides are synthesized (ppGp or pGpp), the cellular transcriptional profile changes dramatically and 70S ribosome dimerization occurs. Overexpression in the presence of a wild-type relA gene does not have these effects. In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) i [...] | GTP pyrophosphokinase (RelA/SpoT); In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp, it is probably the hydrolysis activity that is required for optimal growth (Probable); Belongs to the RelA/SpoT family. | 0.996 |
rplE | rplF | BSU01280 | BSU01310 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | 0.999 |
rplE | rplO | BSU01280 | BSU01350 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | Ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. | 0.999 |
rplE | rpsE | BSU01280 | BSU01330 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | Ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations); Belongs to the universal ribosomal protein uS5 family. | 0.999 |
rplE | rpsF | BSU01280 | BSU40910 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | Ribosomal protein S6 (BS9); Binds together with S18 to 16S ribosomal RNA. | 0.998 |
rplE | rpsL | BSU01280 | BSU01100 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | Ribosomal protein S12 (BS12); With S4 and S5 plays an important role in translational accuracy. | 0.999 |
rplE | rpsO | BSU01280 | BSU16680 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | Ribosomal protein S15 (BS18); One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. | 0.997 |
rplE | rpsQ | BSU01280 | BSU01250 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | Ribosomal protein S17 (BS16); One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. | 0.999 |
rplE | rsh | BSU01280 | BSU27600 | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | GTP pyrophosphokinase (RelA/SpoT); In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp, it is probably the hydrolysis activity that is required for optimal growth (Probable); Belongs to the RelA/SpoT family. | 0.965 |
rplF | rplE | BSU01310 | BSU01280 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | Ribosomal protein L5 (BL6); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. | 0.999 |
rplF | rplO | BSU01310 | BSU01350 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | Ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. | 0.999 |
rplF | rpsE | BSU01310 | BSU01330 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | Ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations); Belongs to the universal ribosomal protein uS5 family. | 0.999 |
rplF | rpsF | BSU01310 | BSU40910 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | Ribosomal protein S6 (BS9); Binds together with S18 to 16S ribosomal RNA. | 0.998 |
rplF | rpsL | BSU01310 | BSU01100 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | Ribosomal protein S12 (BS12); With S4 and S5 plays an important role in translational accuracy. | 0.999 |
rplF | rpsO | BSU01310 | BSU16680 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | Ribosomal protein S15 (BS18); One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. | 0.997 |
rplF | rpsQ | BSU01310 | BSU01250 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | Ribosomal protein S17 (BS16); One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. | 0.999 |
rplF | rsh | BSU01310 | BSU27600 | Ribosomal protein L6 (BL8); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. | GTP pyrophosphokinase (RelA/SpoT); In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp, it is probably the hydrolysis activity that is required for optimal growth (Probable); Belongs to the RelA/SpoT family. | 0.970 |