node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
bofA | ctpB | BSU00230 | BSU35240 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | 0.900 |
bofA | spoIID | BSU00230 | BSU36750 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Autolysin required for complete dissolution of the asymmetric septum (stage II sporulation); May act at the level of sigma-G activity or its stability. SpoIID is probably required for engulfment. | 0.815 |
bofA | spoIIIAG | BSU00230 | BSU24370 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Stage III sporulation engulfment assembly protein; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type cp: cell process. | 0.596 |
bofA | spoIIIAH | BSU00230 | BSU24360 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Stage III sporulation ratchet engulfment protein; Involved in forespore engulfment. Forms a channel with SpoIIIAH that is open on the forespore end and closed (or gated) on the mother cell end. This allows sigma-E-directed gene expression in the mother-cell compartment of the sporangium to trigger the activation of sigma-G forespore-specific gene expression by a pathway of intercellular signaling. | 0.903 |
bofA | spoIIM | BSU00230 | BSU23530 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Autolysin component for dissolution of the septal cell wall (stage II sporulation); Required for complete septum migration and engulfment of the forespore compartment during sporulation. Required for stabilizing and recruiting of SpoIIP to the septal membrane. | 0.825 |
bofA | spoIIP | BSU00230 | BSU25530 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Spore autolysin (stage II sporulation); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type cp: cell process. | 0.924 |
bofA | spoIIQ | BSU00230 | BSU36550 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Forespore protein required for alternative engulfment; Involved in forespore engulfment and required for anchoring membrane proteins on the forespore side of the septal membrane. Forms a channel with SpoIIIAH that is open on the forespore end and closed (or gated) on the mother cell end. This allows sigma-E-directed gene expression in the mother-cell compartment of the sporangium to trigger the activation of sigma-G forespore-specific gene expression by a pathway of intercellular signaling. | 0.881 |
bofA | spoIVB | BSU00230 | BSU24230 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Regulatory membrane-associated serine protease; Plays a central role in the sigma-K checkpoint which coordinates gene expression during the later stages of spore formation. The protease is activated by trans cleavage of the zymogen precursor producing SpoIVB-45 kDa. This undergoes further trimming by cis cleavage to form SpoIVB-43 kDa and SpoIVB-42 kDa. The protease then cleaves the C-terminus of the SpoIVFA metalloprotease activating the latter. | 0.929 |
bofA | spoIVFA | BSU00230 | BSU27980 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Regulator of SpoIVFB (stage IV sporulation); Implicated in the coupling of mother cell to forespore gene expression. Required for spore formation at 37 degrees Celsius, but not at 30 degrees Celsius. SpoIVFA plays a central role in both maintaining the SpoIVFA/BofA/SpoIVFB complex and anchoring it to the outer forespore membrane. SpoIVFA brings BofA into close proximity to SpoIVFB, allowing BofA to inhibit SpoIVFB. Increased accumulation of SpoIVFA seems to inhibit the activity of SpoIVFB and thus regulates the activation of sigma-K. | 0.996 |
bofA | spoIVFB | BSU00230 | BSU27970 | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | Membrane metalloprotease; Implicated in the coupling of mother cell to forespore gene expression. Required for spore formation. Processes the pro-sigma K factor. | 0.996 |
ctpB | bofA | BSU35240 | BSU00230 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | 0.900 |
ctpB | spoIID | BSU35240 | BSU36750 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Autolysin required for complete dissolution of the asymmetric septum (stage II sporulation); May act at the level of sigma-G activity or its stability. SpoIID is probably required for engulfment. | 0.458 |
ctpB | spoIIIAH | BSU35240 | BSU24360 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Stage III sporulation ratchet engulfment protein; Involved in forespore engulfment. Forms a channel with SpoIIIAH that is open on the forespore end and closed (or gated) on the mother cell end. This allows sigma-E-directed gene expression in the mother-cell compartment of the sporangium to trigger the activation of sigma-G forespore-specific gene expression by a pathway of intercellular signaling. | 0.413 |
ctpB | spoIIM | BSU35240 | BSU23530 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Autolysin component for dissolution of the septal cell wall (stage II sporulation); Required for complete septum migration and engulfment of the forespore compartment during sporulation. Required for stabilizing and recruiting of SpoIIP to the septal membrane. | 0.431 |
ctpB | spoIIP | BSU35240 | BSU25530 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Spore autolysin (stage II sporulation); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type cp: cell process. | 0.464 |
ctpB | spoIIQ | BSU35240 | BSU36550 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Forespore protein required for alternative engulfment; Involved in forespore engulfment and required for anchoring membrane proteins on the forespore side of the septal membrane. Forms a channel with SpoIIIAH that is open on the forespore end and closed (or gated) on the mother cell end. This allows sigma-E-directed gene expression in the mother-cell compartment of the sporangium to trigger the activation of sigma-G forespore-specific gene expression by a pathway of intercellular signaling. | 0.681 |
ctpB | spoIVB | BSU35240 | BSU24230 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Regulatory membrane-associated serine protease; Plays a central role in the sigma-K checkpoint which coordinates gene expression during the later stages of spore formation. The protease is activated by trans cleavage of the zymogen precursor producing SpoIVB-45 kDa. This undergoes further trimming by cis cleavage to form SpoIVB-43 kDa and SpoIVB-42 kDa. The protease then cleaves the C-terminus of the SpoIVFA metalloprotease activating the latter. | 0.945 |
ctpB | spoIVFA | BSU35240 | BSU27980 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Regulator of SpoIVFB (stage IV sporulation); Implicated in the coupling of mother cell to forespore gene expression. Required for spore formation at 37 degrees Celsius, but not at 30 degrees Celsius. SpoIVFA plays a central role in both maintaining the SpoIVFA/BofA/SpoIVFB complex and anchoring it to the outer forespore membrane. SpoIVFA brings BofA into close proximity to SpoIVFB, allowing BofA to inhibit SpoIVFB. Increased accumulation of SpoIVFA seems to inhibit the activity of SpoIVFB and thus regulates the activation of sigma-K. | 0.964 |
ctpB | spoIVFB | BSU35240 | BSU27970 | Swarming motility protein; Involved in the signal transduction pathway leading to the proteolytic activation of the mother cell transcription factor pro- sigma-K during sporulation. The signaling serine protease CtpB triggers pro-sigma-K processing by cleaving the pre-processed regulatory protein SpoIVFA and is necessary for the proper timing of sigma-K activation. Belongs to the peptidase S41A family. | Membrane metalloprotease; Implicated in the coupling of mother cell to forespore gene expression. Required for spore formation. Processes the pro-sigma K factor. | 0.895 |
spoIID | bofA | BSU36750 | BSU00230 | Autolysin required for complete dissolution of the asymmetric septum (stage II sporulation); May act at the level of sigma-G activity or its stability. SpoIID is probably required for engulfment. | Inhibitor of the pro-sigma(K) processing machinery; Involved in the mediation of the intercompartmental coupling of pro-sigma K processing to events in the forespore. Inhibits SpoIVFB- processing activity until a signal has been received from the forespore. Could inhibit SpoIVFB metalloprotease activity by coordinating a zinc in the SpoIVFB active site, preventing access of a water molecule and the sequence of pro-sigma K, which are necessary for peptide bond hydrolysis to produce sigma-K. | 0.815 |