STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mutMformamidopyrimidine-DNA glycosidase; Involved in the GO system responsible for removing an oxidatively damaged form of guanine (7,8-dihydro-8-oxoguanine, 8-oxo- dGTP) from DNA and the nucleotide pool. 8-oxo-dGTP is inserted opposite dA and dC residues of template DNA with almost equal efficiency thus leading to A.T to G.C transversions (By similarity). Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 8-oxo-dGTP. Has AP (apurinic/apyrimidi [...] (276 aa)    
Predicted Functional Partners:
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 3'-5' and 5'-3' exonuclease activity.
  
  
 0.996
coaE
Dephosphocoenzyme A kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family.
 
  
 0.990
mutY
A/G-specific adenine glycosylase or DNA-(apurinic or apyrimidinic site) lyase; Base excision repair (BER) glycosylase that initiates repair of A:oxoG to C:G by removing the inappropriately paired adenine base from the DNA backbone, generating an abasic site product. 8-oxoguanine (oxoG) is a genotoxic DNA lesion resulting from oxidation of guanine; this residue is misread by replicative DNA polymerases, that insert adenine instead of cytosine opposite the oxidized damaged base. Shows a powerful dicrimination of A versus C, since it does not cleave cytosine in oxoG:C pairs. May also be a [...]
  
  
 0.986
nth
Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate; Belongs to the Nth/MutY family.
   
  
 0.973
mutT
Putative NTP pyrophosphohydrolase; May be involved in the GO system responsible for removing an oxidatively damaged form of guanine (7,8-dihydro-8-oxoguanine, 8-oxo- dGTP) from DNA and the nucleotide pool. 8-oxo-dGTP is inserted opposite dA and dC residues of template DNA with almost equal efficiency thus leading to A.T to G.C transversions. MutT specifically degrades 8-oxo- dGTP to the monophosphate (By similarity). Functions, in conjunction with ytkD, to protect vegetatively growing cells from DNA-damaging agents such as H(2)O(2) or t-BHP (t-butylhydroperoxide). The 2 proteins do not [...]
     
 0.953
nfo
Type IV apurinic/apyrimidinic endonuclease; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic (AP) sites, generating a 3'-hydroxyl group and a 5'-terminal sugar phosphate.
  
  
 0.893
uvrC
Excinuclease ABC (subunit C); The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 
  
 0.888
uvrA
Excinuclease ABC (subunit A); The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
   
  
 0.885
recA
Multifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...]
  
  
 0.840
uvrB
Excinuclease ABC (subunit B); The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociat [...]
  
  
 0.821
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (24%) [HD]