node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cheV | fliY | BSU14010 | BSU16320 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | 0.999 |
cheV | phoR | BSU14010 | BSU29100 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Two-component sensor histidine kinase; Member of the two-component regulatory system PhoP/PhoR involved in the alkaline phosphatase genes regulation. PhoR may function as a membrane-associated protein kinase that phosphorylates PhoP in response to environmental signals. | 0.633 |
cheV | rsbS | BSU14010 | BSU04680 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Antagonist of RsbT; Negative regulator of sigma-B activity. Non-phosphorylated RsbS binds to RsbT, preventing its association with RsbU. Requires any one of RsbRA, RsbRB, RsbRC or RsbRD to sequester RsbT. When RsbS and the RsbR paralog(s) are phosphorylated, they release RsbT, which can then bind and activate RsbU. | 0.447 |
cheV | ykoW | BSU14010 | BSU13420 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Putative sensor diguanylate cyclase; Probable signaling protein whose physiological role is not yet known. | 0.877 |
cheV | ytvA | BSU14010 | BSU30340 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Blue light GTP-binding receptor; Exhibits the same spectroscopical features and blue-light induced photochemistry as plants phototropins, with the reversible formation of a blue-shifted photoproduct, assigned to an FMN-cysteine thiol adduct. Although it is a positive regulator in the activation of the environmental signaling branch of the general stress transcription factor sigma-B, its precise role is undetermined. | 0.969 |
fliY | cheV | BSU16320 | BSU14010 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | 0.999 |
fliY | rsbP | BSU16320 | BSU34110 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Serine phosphatase; Positive regulator of sigma-B activity. Dephosphorylates RsbV in response to energy stress. | 0.506 |
fliY | rsbS | BSU16320 | BSU04680 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Antagonist of RsbT; Negative regulator of sigma-B activity. Non-phosphorylated RsbS binds to RsbT, preventing its association with RsbU. Requires any one of RsbRA, RsbRB, RsbRC or RsbRD to sequester RsbT. When RsbS and the RsbR paralog(s) are phosphorylated, they release RsbT, which can then bind and activate RsbU. | 0.842 |
fliY | rsbT | BSU16320 | BSU04690 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Switch protein/serine-threonine kinase; Provides the crucial link between the upstream module (communication of environmental stress) and the downstream module (integration of the environmental signals with signals of energy stress) that compose the signal transduction pathway controlling the sigma-B factor. Phosphorylates and inactivates its specific antagonist protein RsbS thanks to its serine kinase activity. Upon phosphorylation of RsbS, RsbT is released to stimulate RsbU, a PP2C phosphatase, thereby initiating the signaling cascade that ultimately activates sigma-B. The activity o [...] | 0.497 |
fliY | rsbU | BSU16320 | BSU04700 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Serine phosphatase; Positive regulator of sigma-B activity. Dephosphorylates RsbV in response to environmental stress conveyed from the RsbXST module. | 0.505 |
fliY | rsbW | BSU16320 | BSU04720 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Switch protein/serine kinase and anti-sigma factor (inhibitory sigma-B binding protein); Negative regulator of sigma-B activity. Phosphorylates and inactivates its specific antagonist protein, RsbV. Upon phosphorylation of RsbV, RsbW is released and binds to sigma-B, thereby blocking its ability to form an RNA polymerase holoenzyme (E-sigma-B). | 0.497 |
fliY | rsbX | BSU16320 | BSU04740 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Serine phosphatase; Negative regulator of sigma-B activity. Dephosphorylates RsbS. Plays a role both in maintaining low sigma-B activity during growth and in reestablishing prestress sigma-B activity after induction. Could have a negative feedback role by indirectly communicating sigma-B protein levels. | 0.502 |
fliY | ykoW | BSU16320 | BSU13420 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Putative sensor diguanylate cyclase; Probable signaling protein whose physiological role is not yet known. | 0.760 |
fliY | ytvA | BSU16320 | BSU30340 | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | Blue light GTP-binding receptor; Exhibits the same spectroscopical features and blue-light induced photochemistry as plants phototropins, with the reversible formation of a blue-shifted photoproduct, assigned to an FMN-cysteine thiol adduct. Although it is a positive regulator in the activation of the environmental signaling branch of the general stress transcription factor sigma-B, its precise role is undetermined. | 0.898 |
phoR | cheV | BSU29100 | BSU14010 | Two-component sensor histidine kinase; Member of the two-component regulatory system PhoP/PhoR involved in the alkaline phosphatase genes regulation. PhoR may function as a membrane-associated protein kinase that phosphorylates PhoP in response to environmental signals. | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | 0.633 |
phoR | ykoW | BSU29100 | BSU13420 | Two-component sensor histidine kinase; Member of the two-component regulatory system PhoP/PhoR involved in the alkaline phosphatase genes regulation. PhoR may function as a membrane-associated protein kinase that phosphorylates PhoP in response to environmental signals. | Putative sensor diguanylate cyclase; Probable signaling protein whose physiological role is not yet known. | 0.610 |
phoR | ytvA | BSU29100 | BSU30340 | Two-component sensor histidine kinase; Member of the two-component regulatory system PhoP/PhoR involved in the alkaline phosphatase genes regulation. PhoR may function as a membrane-associated protein kinase that phosphorylates PhoP in response to environmental signals. | Blue light GTP-binding receptor; Exhibits the same spectroscopical features and blue-light induced photochemistry as plants phototropins, with the reversible formation of a blue-shifted photoproduct, assigned to an FMN-cysteine thiol adduct. Although it is a positive regulator in the activation of the environmental signaling branch of the general stress transcription factor sigma-B, its precise role is undetermined. | 0.917 |
rsbP | fliY | BSU34110 | BSU16320 | Serine phosphatase; Positive regulator of sigma-B activity. Dephosphorylates RsbV in response to energy stress. | Flagellar motor switching and energizing phosphatase; Component of the flagellar switch. Binds CheY-P and increases its hydrolysis rate in vitro. May function constitutively to remove CheY-P around the flagellar switch to maintain an optimal level of CheY-P whereas CheC may function after addition of an attractant to cope with increased levels of CheY-P; Belongs to the FliN/MopA/SpaO family. | 0.506 |
rsbP | rsbS | BSU34110 | BSU04680 | Serine phosphatase; Positive regulator of sigma-B activity. Dephosphorylates RsbV in response to energy stress. | Antagonist of RsbT; Negative regulator of sigma-B activity. Non-phosphorylated RsbS binds to RsbT, preventing its association with RsbU. Requires any one of RsbRA, RsbRB, RsbRC or RsbRD to sequester RsbT. When RsbS and the RsbR paralog(s) are phosphorylated, they release RsbT, which can then bind and activate RsbU. | 0.968 |
rsbP | rsbT | BSU34110 | BSU04690 | Serine phosphatase; Positive regulator of sigma-B activity. Dephosphorylates RsbV in response to energy stress. | Switch protein/serine-threonine kinase; Provides the crucial link between the upstream module (communication of environmental stress) and the downstream module (integration of the environmental signals with signals of energy stress) that compose the signal transduction pathway controlling the sigma-B factor. Phosphorylates and inactivates its specific antagonist protein RsbS thanks to its serine kinase activity. Upon phosphorylation of RsbS, RsbT is released to stimulate RsbU, a PP2C phosphatase, thereby initiating the signaling cascade that ultimately activates sigma-B. The activity o [...] | 0.976 |