STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (127 aa)    
Predicted Functional Partners:
gcvPB
Glycine decarboxylase (subunit 2) (glycine cleavage system protein P); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (By similarity); Belongs to the GcvP family. C-terminal subunit subfamily.
 0.999
gcvT
Aminomethyltransferase (glycine cleavage system protein T); The glycine cleavage system catalyzes the degradation of glycine.
 0.999
gcvPA
Glycine decarboxylase (subunit 1) (glycine cleavage system protein P); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (By similarity).
 0.998
lipM
Protein octanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domain of GcvH, an intermediate carrier during protein lipoylation. Is also able to catalyze the reverse reaction. Octanoyl-CoA can also act as a substrate although very poorly. Does not display lipoate protein ligase activity, despite its sequence similarity to LplA; Belongs to the octanoyltransferase LipM family.
 
 0.992
acoL
Acetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family.
 
  
 0.989
lpdV
Branched-chain alpha-keto acid dehydrogenase E3 subunit (dihydrolipoamide dehydrogenase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family.
 
  
 0.989
lipA
Lipoyl synthase (lipoic acid synthetase); Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives; Belongs to the radical SAM superfamily. Lipoyl synthase family.
 
 0.989
lplJ
Lipoate-protein ligase; Catalyzes both the ATP-dependent activation of exogenously supplied lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of lipoate-dependent enzymes. Is also able to use octanoate as substrate.
 
 0.988
pdhD
Dihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family.
 
  
 0.983
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity); Belongs to the SHMT family.
 
 
 0.975
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (28%) [HD]