STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gapAGlyceraldehyde-3-phosphate dehydrogenase; Involved in the glycolysis. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3- bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (335 aa)    
Predicted Functional Partners:
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
 
 
 0.999
tpiA
Triose phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
 0.999
pgk
Phosphoglycerate kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the phosphoglycerate kinase family.
 0.999
fbaA
Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis.
  
 0.997
pgi
Glucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family.
  
 
 0.993
cggR
Transcriptional regulator of gapA; In the absence of glucose, represses the transcription of the gapA operon, which encodes five key glycolytic enzymes. Binds specifically to the cggR-gapA promoter region and blocks the progression of the RNA polymerase, leading to the arrest of the transcription; Belongs to the SorC transcriptional regulatory family.
  
  
 0.992
pyk
Pyruvate kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; In the C-terminal section; belongs to the PEP-utilizing enzyme family.
 
 
 0.989
zwf
Glucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone.
  
 0.966
pgm
Phosphoglycerate mutase; Essential for rapid growth and for sporulation. Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate.
  
 
 0.964
tkt
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
 
 0.963
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (28%) [HD]