STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
yvdDConserved hypothetical protein; Evidence 4: Homologs of previously reported genes of unknown function; Belongs to the LOG family. (191 aa)    
Predicted Functional Partners:
prmC
Glutamine methylase of release factor 1 (and perhaps others) at a GGQ site; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily.
      0.813
yvdC
Putative pyrophosphohydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme.
 
    0.787
cypB
Cytochrome P450 CYP102A3; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of medium to long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 and omega-3 positions, in approximately equal proportions. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain.
      
 0.632
miaA
tRNA isopentenylpyrophosphate transferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family.
     
 0.574
cypD
Putative bifunctional P-450/NADPH-P450 reductase 1; Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of a range of long-chain fatty acids, with a preference for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids. Hydroxylation of myristic acid occurs mainly at the omega-2 position. Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain. Is also able to catalyze efficient oxidation of sodium dodecyl sulfate (SDS).
      
 0.522
pksD
Enzyme involved in polyketide synthesis; Probably involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism.
 
    
 0.497
miaB
Enzyme for ms(2)i(6)A formation for tRNA modification; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine.
     
 0.488
hepT
Heptaprenyl diphosphate synthase component II; Supplies heptaprenyl diphosphate, the precursor for the side chain of the isoprenoid quinone menaquinone-7 (MQ-7). Belongs to the FPP/GGPP synthase family.
     
 0.451
mdxR
Transcriptional activator of the maltodextrin operon (LacI family); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type pr: putative regulator.
       0.442
nrdF
Ribonucleoside-diphosphate reductase (minor subunit); Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity).
  
    0.403
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (36%) [HD]