STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nagBAN-acetylglucosamine-6-phosphate isomerase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion; Belongs to the glucosamine/galactosamine-6-phosphate isomerase family. NagB subfamily. (242 aa)    
Predicted Functional Partners:
nagA
N-acetylglucosamine-6-phosphate deacetylase; Involved in the first committed step in the biosynthesis of amino-sugar-nucleotides. Catalyzes the hydrolysis of the N-acetyl group of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) to yield glucosamine 6- phosphate and acetate; Belongs to the metallo-dependent hydrolases superfamily. NagA family.
 0.999
gamP
Phosphotransferase system (PTS) glucosamine-specific enzyme IICBA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system may be involved in glucosamine transport.
 
 
 0.994
nagR
Transcriptional regulator (GntR family); Main transcriptional repressor of genes involved in N- acetylglucosamine (GlcNAc) transport and utilization. Represses the expression of the nagAB and nagP operons by binding directly within their upstream regions. Binds to the DNA consensus sequence 5'-ATTGGTATAGACAACT-3'. Also acts as a weak repressor of mapB expression.
  
  
 0.988
glmS
L-glutamine-D-fructose-6-phosphate amidotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
  
 
 0.979
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate (By similarity). Glucosamine-1-phosphate is used for cell wall biosynthesis (Probable); Belongs to the phosphohexose mutase family.
 
 
 0.965
pgi
Glucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family.
  
 0.955
ybcM
Putative enzyme; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme.
  
 
 0.931
nagP
Phosphotransferase system (PTS) N-acetylglucosamine-specific enzyme IICB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylglucosamine transport (By similarity).
  
 0.917
gmuE
ROK fructokinase; Seems to be involved in the degradation of glucomannan.
  
 
 0.914
yvyI
Putative phosphohexomutase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type e: enzyme; Belongs to the mannose-6-phosphate isomerase type 1 family.
   
 
 0.914
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (28%) [HD]