STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa)    
Predicted Functional Partners:
purB
Adenylosuccinate lyase; Influences the affinity of glutamyl--tRNA ligase for its substrates and increases its thermostability; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily.
 
 0.999
guaC
GMP reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides (Probable).
 
 
 0.999
guaB
Inosine-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth.
 
 
 0.997
purH
Fused phosphoribosylaminoimidazole carboxy formyl formyltransferase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme.
  
 0.997
hprT
Hypoxanthine-guanine phosphoribosyltransferase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme.
  
 
 0.979
guaA
GMP synthetase; Catalyzes the synthesis of GMP from XMP.
 
  
 0.976
pyrB
Aspartate carbamoyltransferase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme.
  
 
 0.960
purD
Phosphoribosylglycinamide synthetase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme.
  
 
 0.953
purL
Phosphoribosylformylglycinamidine synthetase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assis [...]
  
  
 0.951
purC
Phosphoribosylaminoimidazole succinocarboxamide synthetase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the SAICAR synthetase family.
  
 
 0.940
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (20%) [HD]