STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gltAType II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (434 aa)    
Predicted Functional Partners:
mdh
Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 3 family.
  
 0.994
acnA
Aconitate hydratase; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and probably via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Could catalyze the hydration of 2- methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity).
 
 0.992
glcB
Malate synthase; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA; Belongs to the malate synthase family. GlcB subfamily.
  
 0.978
AND90955.1
Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family.
  
 
 0.970
AND90456.1
Oxaloacetate decarboxylase; Catalyzes the decarboxylation of oxaloacetate into pyruvate. Seems to play a role in maintaining cellular concentrations of bicarbonate and pyruvate; Belongs to the isocitrate lyase/PEP mutase superfamily. Oxaloacetate decarboxylase family.
 
 0.964
acsA
acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family.
 
 0.958
AND89269.1
AMP-dependent synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.953
AND94417.1
AMP-dependent synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.953
AND93220.1
CoA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.953
aceF
Dihydrolipoamide acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.949
Your Current Organism:
Bradyrhizobium diazoefficiens
NCBI taxonomy Id: 224911
Other names: B. diazoefficiens USDA 110, Bradyrhizobium diazoefficiens USDA 110, Bradyrhizobium japonicum USDA 110
Server load: low (22%) [HD]