STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
disADNA-binding protein; Participates in a DNA-damage check-point that is active prior to asymmetric division when DNA is damaged. DisA forms globular foci that rapidly scan along the chromosomes during sporulation, searching for lesions. When a lesion is present, DisA pauses at the lesion site. This triggers a cellular response that culminates in a temporary block in sporulation initiation. (357 aa)    
Predicted Functional Partners:
radA
DNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function.
  
  
 0.994
BC_0105
Hypothetical Membrane Associated Protein.
  
  
 0.736
mcsB
Arginine kinase; Catalyzes the specific phosphorylation of arginine residues in a large number of proteins. Is part of the bacterial stress response system. Protein arginine phosphorylation has a physiologically important role and is involved in the regulation of many critical cellular processes, such as protein homeostasis, motility, competence, and stringent and stress responses, by regulating gene expression and protein activity.
  
    0.688
BC_0100
ClpC ATPase.
  
    0.686
BC_0102
Negative regulator of genetic competence clpC/mecB; Belongs to the ClpA/ClpB family.
  
    0.683
ispD
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP).
  
    0.681
BC_0099
Transcriptional regulator ctsR; Belongs to the CtsR family.
  
  
 0.522
hisS-2
Histidyl-tRNA synthetase.
      
 0.521
hisS-1
Histidyl-tRNA synthetase.
      
 0.510
glmS
Glucosamine--fructose-6-phosphate aminotransferase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
      
 0.509
Your Current Organism:
Bacillus cereus ATCC 14579
NCBI taxonomy Id: 226900
Other names: B. cereus ATCC 14579, Bacillus cereus (strain ATCC 14579 / DSM 31)
Server load: low (14%) [HD]