STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
anmKHypothetical protein; Catalyzes the specific phosphorylation of 1,6-anhydro-N- acetylmuramic acid (anhMurNAc) with the simultaneous cleavage of the 1,6-anhydro ring, generating MurNAc-6-P. Is required for the utilization of anhMurNAc either imported from the medium or derived from its own cell wall murein, and thus plays a role in cell wall recycling; Belongs to the anhydro-N-acetylmuramic acid kinase family. (393 aa)    
Predicted Functional Partners:
murQ
Glucokinase regulatory protein; Specifically catalyzes the cleavage of the D-lactyl ether substituent of MurNAc 6-phosphate, producing GlcNAc 6-phosphate and D- lactate.
 
 0.996
BC_2397
ATPase family protein.
    0.937
nagA
N-acetylgalactosamine-6-phosphate deacetylase.
 
   
 0.856
nagB
Glucosamine-6-phosphate isomerase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion.
     
 0.826
BC_2395
Hypothetical protein.
       0.771
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family.
      
 0.657
glmU
Glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family.
 
   
 0.646
BC_2393
PTS system, diacetylchitobiose-specific IIB component.
 
    0.642
BC_2394
PTS system, diacetylchitobiose-specific IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
 
    0.629
BC_2392
FenI.
 
     0.525
Your Current Organism:
Bacillus cereus ATCC 14579
NCBI taxonomy Id: 226900
Other names: B. cereus ATCC 14579, Bacillus cereus (strain ATCC 14579 / DSM 31)
Server load: low (18%) [HD]