STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
grpEGrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interacti [...] (208 aa)    
Predicted Functional Partners:
dnaK
Chaperone protein; Acts as a chaperone (By similarity). Might have a role in the infectious process.
 
 0.999
dnaJ
Chaperone protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK a [...]
 
 
 0.982
groEL
60 kDa chaperonin GROEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. Belongs to the chaperonin (HSP60) family.
  
 0.951
cbpA
Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM.
 
 
 0.938
groES
10 kDa chaperonin GROES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
  
 
 0.924
htpG
Chaperone protein; Molecular chaperone. Has ATPase activity; Belongs to the heat shock protein 90 family.
   
 
 0.830
hslU
ATP-dependent endopeptidase hsl ATP-binding subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
   
  
 0.806
hslV
ATP-dependent endopeptidase hsl proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
   
  
 0.802
lon
ATP-dependent endopeptidase; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
  
  
 0.768
CBU_0062
DnaJ domain protein.
  
 
 0.764
Your Current Organism:
Coxiella burnetii
NCBI taxonomy Id: 227377
Other names: C. burnetii RSA 493, Coxiella burnetii RSA 493, Coxiella burnetii str. RSA 493
Server load: low (18%) [HD]