STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nagBGlucosamine-6-phosphate deaminase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion. (270 aa)    
Predicted Functional Partners:
nagA
N-acetylglucosamine-6-phosphate deacetylase; Catalyzes the formation of glucosamine 6-phosphate from N-acetylglucosamine 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
pgi
Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
 0.943
glmS
Glucosamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
  
 
 0.933
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family.
  
 
 0.933
AKH65204.1
Mannose-6-phosphate isomerase; Catalyzes the formation of of fructose 6-phosphate from mannose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.927
AKH62178.1
PTS N-acetyl glucosamine transporter subunits IIABC; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.839
zwf
Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone.
  
  
 0.781
AKH62181.1
Transcriptional regulator; Regulates the synthesis of glucosamine and N-acetylglucosamine by acting as a repressor of the nagEBACD operon and both a repressor and activator of the glmSU operon; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.710
cutC
Copper homeostasis protein CutC; Participates in the control of copper homeostasis. Belongs to the CutC family.
 
   
 0.709
dnaE
DNA polymerase III subunit alpha; Catalyzes DNA-template-directed extension of the 3'- end of a DNA strand by one nucleotide at a time; main replicative polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.617
Your Current Organism:
Photorhabdus thracensis
NCBI taxonomy Id: 230089
Other names: CIP 108426, DSM 15199, NCIMB 13952, P. thracensis, Photorhabdus luminescens subsp. thracensis, Photorhabdus luminescens subsp. thracensis Hazir et al. 2004, Photorhabdus temperata subsp. thracensis, Photorhabdus temperata subsp. thracensis (Hazir et al. 2004) Tailliez et al. 2010, strain 39-8
Server load: low (22%) [HD]