node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CF15_02090 | pdxS | CF15_02090 | CF15_02085 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyridoxal biosynthesis protein; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family. | 0.499 |
CF15_02090 | pdxT | CF15_02090 | CF15_02080 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glutamine amidotransferase; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS. | 0.499 |
CF15_05525 | gatA | CF15_05525 | CF15_01000 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | 0.999 |
CF15_05525 | gatB | CF15_05525 | CF15_04275 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. | 0.999 |
CF15_05525 | gatD | CF15_05525 | CF15_03755 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | glutamyl-tRNA(Gln) amidotransferase subunit D; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. | 0.999 |
CF15_05525 | gatE | CF15_05525 | CF15_03760 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. | 0.999 |
CF15_05525 | guaA | CF15_05525 | CF15_00065 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.769 |
CF15_05525 | pdxS | CF15_05525 | CF15_02085 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyridoxal biosynthesis protein; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family. | 0.516 |
CF15_05525 | pdxT | CF15_05525 | CF15_02080 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glutamine amidotransferase; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS. | 0.499 |
CF15_05610 | guaA | CF15_05610 | CF15_00065 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.991 |
CF15_05610 | pdxS | CF15_05610 | CF15_02085 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyridoxal biosynthesis protein; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family. | 0.996 |
CF15_05610 | pdxT | CF15_05610 | CF15_02080 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glutamine amidotransferase; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS. | 0.996 |
CF15_07570 | guaA | CF15_07570 | CF15_00065 | Phosphomethylpyrimidine kinase; Catalyzes the formation of 4-amino-2-methyl-5-diphosphomethylpyrimidine; Derived by automated computational analysis using gene prediction method: Protein Homology. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.557 |
CF15_07570 | pdxS | CF15_07570 | CF15_02085 | Phosphomethylpyrimidine kinase; Catalyzes the formation of 4-amino-2-methyl-5-diphosphomethylpyrimidine; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyridoxal biosynthesis protein; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family. | 0.610 |
CF15_07570 | pdxT | CF15_07570 | CF15_02080 | Phosphomethylpyrimidine kinase; Catalyzes the formation of 4-amino-2-methyl-5-diphosphomethylpyrimidine; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glutamine amidotransferase; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS. | 0.599 |
gatA | CF15_05525 | CF15_01000 | CF15_05525 | Hypothetical protein; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
gatA | gatB | CF15_01000 | CF15_04275 | Hypothetical protein; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. | 0.999 |
gatA | gatD | CF15_01000 | CF15_03755 | Hypothetical protein; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | glutamyl-tRNA(Gln) amidotransferase subunit D; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. | 0.996 |
gatA | gatE | CF15_01000 | CF15_03760 | Hypothetical protein; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. | 0.997 |
gatA | guaA | CF15_01000 | CF15_00065 | Hypothetical protein; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.897 |