STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpoHRNA polymerase, sigma 32 subunit, RpoH; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (321 aa)    
Predicted Functional Partners:
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.954
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 
 0.940
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.933
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.914
Ajs_3104
KEGG: csa:Csal_1723 diguanylate cyclase with PAS/PAC sensor; TIGRFAM: PAS sensor protein; diguanylate cyclase; PFAM: GGDEF domain containing protein; PAS fold-3 domain protein; PAS fold-4 domain protein; PAS fold domain protein; SMART: PAS domain containing protein.
   
 
 0.855
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
 
 
 0.821
groL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 
 0.791
nusA
NusA antitermination factor; Participates in both transcription termination and antitermination.
 
 
 0.764
dnaG
DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication.
 
  
 0.740
dksA
Transcriptional regulator, TraR/DksA family; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters.
 
 
 0.689
Your Current Organism:
Acidovorax sp. JS42
NCBI taxonomy Id: 232721
Other names: A. sp. JS42
Server load: low (18%) [HD]