STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsN-230S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa)    
Predicted Functional Partners:
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family.
  
 0.999
rpsS
30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA.
 
 0.999
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family.
 
 0.999
rpsI
30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family.
  
 0.999
rpmG-2
50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family.
 
 
 0.999
rpmB-2
50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family.
 
 
 0.999
rpsO
30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
   
 0.997
rpsB
30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family.
  
 0.997
rpsL
30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
  
 0.997
rpsG
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
  
 0.997
Your Current Organism:
Tsukamurella pseudospumae
NCBI taxonomy Id: 239498
Other names: DSM 44118, JCM 13375, JCM 15929 [[Tsukamurella sunchonensis]], KCTC 9827 [[Tsukamurella sunchonensis]], NCIMB 13963, NRRL B-24668 [[Tsukamurella sunchonensis]], T. pseudospumae, Tsukamurella pseudospumae Nam et al. 2004 emend. Teng et al. 2016, Tsukamurella sp. SCNU5, Tsukamurella sp. U5, Tsukamurella sunchonensis, Tsukamurella sunchonensis Seong et al. 2008, strain N1176, strain SCNU5 [[Tsukamurella sunchonensis]]
Server load: low (26%) [HD]