STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aroEShikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (278 aa)    
Predicted Functional Partners:
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
 
 0.995
aroK
Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family.
 
 0.994
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).
 
 0.993
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
 
 0.970
SDN74995.1
3-deoxy-D-arabinoheptulosonate-7-phosphate synthase /chorismate mutase.
 
 
 0.964
aroQ
3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family.
 
 
 0.957
SDP56721.1
Hypothetical protein.
  
   0.949
nadD
Nicotinate-nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD).
  
  
 0.947
SDP56607.1
Putative HD superfamily hydrolase of NAD metabolism.
  
    0.917
SDP56661.1
RNA-binding protein.
  
    0.901
Your Current Organism:
Halobacillus aidingensis
NCBI taxonomy Id: 240303
Other names: CGMCC 1.3703, H. aidingensis, Halobacillus aidingensis Liu et al. 2005, Halobacillus sp. AD-6, JCM 12771, strain AD-6
Server load: low (24%) [HD]