STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glmSGlutamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (605 aa)    
Predicted Functional Partners:
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family.
 
 0.988
ANZ65117.1
Glutamate synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.971
ANZ63854.1
Type I glutamate--ammonia ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.967
glmU
Pur operon repressor; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain.
  
 0.947
ANZ65376.1
Glucosamine-6-phosphate deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.942
ANZ63084.1
N-acetylglucosamine-6-phosphate deacetylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.936
pgi
Glucose transporter GlcU; Internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
 
 0.931
ANZ63762.1
Carbamoyl phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family.
   
 0.924
purQ
Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...]
    
 0.924
ANZ64388.1
Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.924
Your Current Organism:
Lactobacillus paracollinoides
NCBI taxonomy Id: 240427
Other names: DSM 15502, JCM 11969, L. paracollinoides, Lactobacillus paracollinoides Suzuki et al. 2004, Lactobacillus pastorianus, Lactobacillus sp. DSM 20197, strain LA2
Server load: low (14%) [HD]