STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
metE5-methyltetrahydropteroyltriglutamate-- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (758 aa)    
Predicted Functional Partners:
ANZ64597.1
Methylenetetrahydrofolate reductase [NAD(P)H]; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family.
 
 
 0.977
metK
Methionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
  
 0.964
ANZ64524.1
Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.936
ANZ64683.1
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.936
ANZ64780.1
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.936
ANZ64781.1
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.936
ANZ64286.1
5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
  0.927
ANZ64638.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
  0.927
luxS
S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family.
    
 0.916
luxS-2
S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family.
    
 0.916
Your Current Organism:
Lactobacillus paracollinoides
NCBI taxonomy Id: 240427
Other names: DSM 15502, JCM 11969, L. paracollinoides, Lactobacillus paracollinoides Suzuki et al. 2004, Lactobacillus pastorianus, Lactobacillus sp. DSM 20197, strain LA2
Server load: low (18%) [HD]