node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
clpA | clpP-2 | MCA1789 | MCA0529 | ATP-dependent Clp protease, ATP-binding subunit ClpA; Identified by similarity to SP:P15716; match to protein family HMM PF00004; match to protein family HMM PF02861; match to protein family HMM PF07724; Belongs to the ClpA/ClpB family. | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.832 |
clpA | hrcA | MCA1789 | MCA1858 | ATP-dependent Clp protease, ATP-binding subunit ClpA; Identified by similarity to SP:P15716; match to protein family HMM PF00004; match to protein family HMM PF02861; match to protein family HMM PF07724; Belongs to the ClpA/ClpB family. | Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.532 |
clpA | lon | MCA1789 | MCA0531 | ATP-dependent Clp protease, ATP-binding subunit ClpA; Identified by similarity to SP:P15716; match to protein family HMM PF00004; match to protein family HMM PF02861; match to protein family HMM PF07724; Belongs to the ClpA/ClpB family. | ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.676 |
clpA | nuoCD | MCA1789 | MCA1357 | ATP-dependent Clp protease, ATP-binding subunit ClpA; Identified by similarity to SP:P15716; match to protein family HMM PF00004; match to protein family HMM PF02861; match to protein family HMM PF07724; Belongs to the ClpA/ClpB family. | NADH dehydrogenase I, C/D subunits; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.427 |
clpB | clpP-2 | MCA3106 | MCA0529 | ATP-dependent Clp protease, ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.832 |
clpB | hrcA | MCA3106 | MCA1858 | ATP-dependent Clp protease, ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.538 |
clpB | lon | MCA3106 | MCA0531 | ATP-dependent Clp protease, ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.676 |
clpB | nuoCD | MCA3106 | MCA1357 | ATP-dependent Clp protease, ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | NADH dehydrogenase I, C/D subunits; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.427 |
clpP-2 | clpA | MCA0529 | MCA1789 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease, ATP-binding subunit ClpA; Identified by similarity to SP:P15716; match to protein family HMM PF00004; match to protein family HMM PF02861; match to protein family HMM PF07724; Belongs to the ClpA/ClpB family. | 0.832 |
clpP-2 | clpB | MCA0529 | MCA3106 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease, ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.832 |
clpP-2 | clpX-1 | MCA0529 | MCA0243 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease, ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | 0.870 |
clpP-2 | clpX-2 | MCA0529 | MCA0530 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease, ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | 0.937 |
clpP-2 | clpX-3 | MCA0529 | MCA1829 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease, ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | 0.898 |
clpP-2 | hrcA | MCA0529 | MCA1858 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.715 |
clpP-2 | lon | MCA0529 | MCA0531 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.641 |
clpP-2 | nuoCD | MCA0529 | MCA1357 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | NADH dehydrogenase I, C/D subunits; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.576 |
clpP-2 | ribBA | MCA0529 | MCA1656 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family. | 0.570 |
clpP-2 | tig | MCA0529 | MCA0528 | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Belongs to the FKBP-type PPIase family. Tig subfamily. | 0.745 |
clpX-1 | clpP-2 | MCA0243 | MCA0529 | ATP-dependent Clp protease, ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.870 |
clpX-1 | lon | MCA0243 | MCA0531 | ATP-dependent Clp protease, ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.474 |