STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvPGlycine dehydrogenase [decarboxylating] (glycine decarboxylase) (glycine cleavage system P-protein); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (958 aa)    
Predicted Functional Partners:
gcvH
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 
 0.999
gcvT
Aminomethyltransferase (glycine cleavage system T protein); The glycine cleavage system catalyzes the degradation of glycine.
 0.999
glyA
Serine hydroxymethyltransferase (serine methylase) (SHMT); Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 
 0.995
lpdA
Dihydrolipoamide dehydrogenase (E3 component of pyruvate and 2-oxoglutarate dehydrogenases complexes) (glycine cleavage system L protein).
 
 
 0.955
kbl
2-amino-3-ketobutyrate coenzyme A ligase (AKB ligase) (glycine acetyltransferase); Catalyzes the cleavage of 2-amino-3-ketobutyrate to glycine and acetyl-CoA.
  
 
 0.938
purD
Phosphoribosylglycinamide synthetase; Belongs to the GARS family.
  
  
 0.930
plu2198
ATP-grasp domain-containing protein; Unnamed protein product; Similar to the phosphoribosylamine--glycine ligase.
  
  
 0.930
purL
Phosphoribosylformylglycineamide synthetase (formylglycineamide ribonucleotide synthetase); Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate.
  
  
 0.929
plu4266
DAO domain-containing protein; Unnamed protein product; Some similarities with sarcosine oxidase.
   
 
 0.917
plu0158
Unnamed protein product; Similar to L-arginine:lysine amidinotransferase and similar to L-arginine:glycine amidinotransferase.
     
  0.900
Your Current Organism:
Photorhabdus laumondii
NCBI taxonomy Id: 243265
Other names: P. laumondii subsp. laumondii TTO1, Photorhabdus laumondii subsp. laumondii TTO1, Photorhabdus luminescens subsp. laumondii TTO1
Server load: low (28%) [HD]