STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ppa-2Inorganic pyrophosphatase; Identified by similarity to SP:Q43187; match to protein family HMM PF00719. (245 aa)    
Predicted Functional Partners:
ppa
Inorganic pyrophosphatase; Identified by similarity to SP:P38576; match to protein family HMM PF00719.
  
  
  0.953
ppk
Polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Belongs to the polyphosphate kinase 1 (PPK1) family.
     
 0.919
MXAN_2119
Polyphosphate kinase 2, internal deletion; Identified by similarity to GB:AAN87337.1; match to protein family HMM PF03976.
    
 0.909
MXAN_2473
Identified by match to protein family HMM PF00719.
     
  0.900
atpF
ATP synthase F0, B subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
 
 0.851
atpH
ATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family.
   
 
 0.830
atpA
ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family.
   
 
 0.787
atpE
ATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
 
 0.779
MXAN_5578
Identified by match to protein family HMM PF01553; match to protein family HMM TIGR00530; Belongs to the 1-acyl-sn-glycerol-3-phosphate acyltransferase family.
  
  
 0.779
MXAN_5579
Putative lysyl-tRNA synthetase-related protein GenX; Identified by match to protein family HMM PF00152.
       0.773
Your Current Organism:
Myxococcus xanthus
NCBI taxonomy Id: 246197
Other names: M. xanthus DK 1622, Myxococcus xanthus DK 1622
Server load: low (28%) [HD]