STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
polCDNA polymerase III PolC; Required for replicative DNA synthesis. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (1435 aa)    
Predicted Functional Partners:
dnaX
DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity.
  
 0.750
KEZ48866.1
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
    
 0.706
KEZ51775.1
DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.681
tmcAL
Hypothetical protein; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of elongator tRNA(Met), using acetate and ATP as substrates. First activates an acetate ion to form acetyladenylate (Ac- AMP) and then transfers the acetyl group to tRNA to form ac(4)C34.
  
    0.674
dnaE
DNA polymerase III DnaE; Catalyzes DNA-template-directed extension of the 3'-end of a DNA strand by one nucleotide at a time. Proposed to be responsible for the synthesis of the lagging strand. In the low GC gram positive bacteria this enzyme is less processive and more error prone than its counterpart in other bacteria; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
0.674
KEZ49670.1
DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.665
KEZ51783.1
Phosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.656
mrnC
Ribonuclease III; Involved in correct processing of both the 5' and 3' ends of 23S rRNA precursor. Processes 30S rRNA precursor transcript even in absence of ribonuclease 3 (Rnc); Rnc processes 30S rRNA into smaller rRNA precursors; Belongs to the MrnC RNase family.
  
    0.641
KEZ52031.1
Exonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 
0.636
KEZ54224.1
Hypothetical protein; Might take part in the signal recognition particle (SRP) pathway. This is inferred from the conservation of its genetic proximity to ftsY/ffh. May be a regulatory protein.
 
     0.628
Your Current Organism:
Bacillus indicus
NCBI taxonomy Id: 246786
Other names: B. indicus, Bacillus cibi, Bacillus cibi Yoon et al. 2005, Bacillus indicus Suresh et al. 2004 emend. Stropko et al. 2014, Bacillus sp. KU12, Bacillus sp. KU14, DSM 15820, DSM 16189 [[Bacillus cibi]], JCM 12168, KCTC 3880 [[Bacillus cibi]], LMG 22858, LMG:22858, MTCC 4374, strain JG-30 [[Bacillus cibi]], strain Sd/3
Server load: low (16%) [HD]