STRINGSTRING
tufA protein (Gloeobacter violaceus) - STRING interaction network
"tufA" - Elongation factor Tu in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tufAElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis (409 aa)    
Predicted Functional Partners:
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (707 aa)
  0.997
tsf
Elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome (219 aa)
   
  0.995
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes (104 aa)
 
  0.995
rps7
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (156 aa)
 
  0.994
rps5
30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy (223 aa)
 
  0.992
rps2
30S ribosomal protein S2 (274 aa)
   
  0.990
rps3
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (247 aa)
 
 
  0.988
rpsM
30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P- sites (127 aa)
 
 
  0.986
rps8
30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (133 aa)
 
 
  0.984
rps4
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit (206 aa)
 
 
  0.983
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (7%) [HD]