STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (387 aa)    
Predicted Functional Partners:
tpiA
Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
 
 0.998
gapA
Type I glyceraldehyde-3-phosphate dehydrogenase; Required for glycolysis; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
 0.993
A3224_08205
Hypothetical protein; Incomplete; partial on complete genome; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
 0.993
eno
Phosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis.
 
 
 0.992
gpmI
2,3-bisphosphoglycerate-independent phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate.
  
 
 0.988
AMX04151.1
Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; involved in growth under gluconeogenic conditions and in glycolytic activity at high ATP concentrations in Corynebacterium; NAD and NADP dependent; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
 0.985
AMX03621.1
Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis.
  
 
 0.975
gapA-2
Type I glyceraldehyde-3-phosphate dehydrogenase; Required for glycolysis; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
 
 0.941
AMX01992.1
Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.940
AMX04236.1
Alkyl hydroperoxide reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.858
Your Current Organism:
Microbulbifer thermotolerans
NCBI taxonomy Id: 252514
Other names: DSM 19189, JCM 14709, M. thermotolerans, Microbulbifer sp. JAMB-A94, Microbulbifer thermotolerans Miyazaki et al. 2008, strain JAMB A94
Server load: low (14%) [HD]