STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaQDNA polymerase III subunit epsilon; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. (234 aa)    
Predicted Functional Partners:
APT57736.1
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
 
 0.990
dnaX
DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity.
  
 0.987
APT57435.1
DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.976
coaE
dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family.
    
 0.946
APT58802.1
DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.929
APT55904.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
  
 
0.926
rnhA
Ribonuclease HI; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids.
 
  
 0.921
APT56483.1
DNA polymerase III subunit chi; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.919
APT57118.1
DNA replication protein DnaC; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.915
dnaE2
Error-prone DNA polymerase; DNA polymerase involved in damage-induced mutagenesis and translesion synthesis (TLS). It is not the major replicative DNA polymerase.
    
 
 0.769
Your Current Organism:
Roseomonas gilardii
NCBI taxonomy Id: 257708
Other names: ATCC 49956, CCUG 33005, CIP 104026, R. gilardii, strain 5424
Server load: low (20%) [HD]