STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mtnBPreprotein translocase subunit TatA; Catalyzes the dehydration of methylthioribulose-1-phosphate (MTRu-1-P) into 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P). Belongs to the aldolase class II family. MtnB subfamily. (210 aa)    
Predicted Functional Partners:
mtnA
S-methyl-5-thioribose-1-phosphate isomerase; Catalyzes the interconversion of methylthioribose-1-phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1-P).
 
 0.997
mtnC
2,3-diketo-5-methylthio-1-phosphopentane phosphatase; Bifunctional enzyme that catalyzes the enolization of 2,3- diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) into the intermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HK- MTPenyl-1-P), which is then dephosphorylated to form the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene). Belongs to the HAD-like hydrolase superfamily. MasA/MtnC family.
 
 
 0.996
mtnD
Acireductone dioxygenase; Catalyzes 2 different reactions between oxygene and the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene) depending upon the metal bound in the active site. Fe-containing acireductone dioxygenase (Fe-ARD) produces formate and 2-keto-4- methylthiobutyrate (KMTB), the alpha-ketoacid precursor of methionine in the methionine recycle pathway. Ni-containing acireductone dioxygenase (Ni-ARD) produces methylthiopropionate, carbon monoxide and formate, and does not lie on the methionine recycle pathway.
 
  
 0.977
APT60098.1
Aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HpcH/HpaI aldolase family.
   
    0.652
APT56431.1
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
  
  
 0.598
speE
Spermidine synthase; Catalyzes the irreversible transfer of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine; Belongs to the spermidine/spermine synthase family.
 
   
 0.579
APT59566.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
  
 0.503
corA
Magnesium and cobalt transport protein CorA; Mediates influx of magnesium ions. Belongs to the CorA metal ion transporter (MIT) (TC 1.A.35) family.
       0.474
APT59689.1
Ribulokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.464
xylB
Xylulokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.447
Your Current Organism:
Roseomonas gilardii
NCBI taxonomy Id: 257708
Other names: ATCC 49956, CCUG 33005, CIP 104026, R. gilardii, strain 5424
Server load: low (18%) [HD]