node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
RPA1192 | RPA1193 | RPA1192 | RPA1193 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
RPA1192 | atpB | RPA1192 | RPA0846 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Fo ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. | 0.576 |
RPA1192 | coxA | RPA1192 | RPA0832 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.956 |
RPA1192 | coxB | RPA1192 | RPA0831 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.948 |
RPA1192 | norC | RPA1192 | RPA1455 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Nitric-oxide reductase subunit C. | 0.716 |
RPA1192 | norE | RPA1192 | RPA1453 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Putative denitrification protein NorE. | 0.954 |
RPA1192 | nuoCD | RPA1192 | RPA4262 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | NADH-ubiquinone dehydrogenase chain C,D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.995 |
RPA1192 | nuoM2 | RPA1192 | RPA4253 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | NADH-ubiquinone dehydrogenase chain M. | 0.794 |
RPA1192 | petA | RPA1192 | RPA1016 | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Ubiquinol-cytochrome-c reductase, Rieske iron-sulfur protein; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.904 |
RPA1193 | RPA1192 | RPA1193 | RPA1192 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
RPA1193 | atpB | RPA1193 | RPA0846 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Fo ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. | 0.677 |
RPA1193 | coxA | RPA1193 | RPA0832 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.984 |
RPA1193 | coxB | RPA1193 | RPA0831 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.980 |
RPA1193 | coxE | RPA1193 | RPA0833 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Heme O synthase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. | 0.616 |
RPA1193 | norC | RPA1193 | RPA1455 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Nitric-oxide reductase subunit C. | 0.519 |
RPA1193 | norE | RPA1193 | RPA1453 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Putative denitrification protein NorE. | 0.948 |
RPA1193 | nuoCD | RPA1193 | RPA4262 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | NADH-ubiquinone dehydrogenase chain C,D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.996 |
RPA1193 | nuoM2 | RPA1193 | RPA4253 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | NADH-ubiquinone dehydrogenase chain M. | 0.896 |
RPA1193 | petA | RPA1193 | RPA1016 | Cytochrome b/c1 precursor; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | Ubiquinol-cytochrome-c reductase, Rieske iron-sulfur protein; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
atpB | RPA1192 | RPA0846 | RPA1192 | Fo ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. | Cytochrome b6-F complex iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.576 |